Role of the intracellular domains of GPIb in controlling the adhesive properties of the platelet GPIb/V/IX complex.
نویسندگان
چکیده
Glycoprotein (GP) Ib/V/IX complex-dependent platelet adhesion to von Willebrand factor (VWF) is supported by the 45-kd N-terminal extracellular domain of the GPIb alpha subunit. Recent results with an adhesion blocking antibody (RAM.1) against GPIb beta, which is disulfide linked to GPIb alpha, have suggested a novel function of this subunit in regulating VWF-mediated platelet adhesion, possibly involving its intracellular face. A putative cooperation between the GPIb alpha and GPIb beta cytoplasmic domains was investigated by measuring the adhesion under flow to immobilized VWF of K562 and Chinese hamster ovary (CHO) cells transfected with GPIb/(V)/IX containing mutations in this region. Adhesion of cells carrying a glycine substitution of the GPIb beta Ser166 phosphorylation site was 50% lower than normal and became insensitive to inhibition by RAM.1. In contrast, forskolin or PGE(1) treatment increased both the phosphorylation of GPIb beta and adhesion of control cells, both effects being reversed by RAM.1, but had no influence on cells expressing the Ser166Gly mutation. A role of the GPIb alpha intracellular domain was also apparent as the VWF-dependent adhesion of cells containing deletions of the entire (Delta 518-610) or portions (Delta 535-568, Delta 569-610) of the GPIb alpha cytoplasmic tail was insensitive to RAM.1 inhibition. Cells carrying progressive 11 amino acid deletions spanning the GPIb alpha 535-590 region were equally unresponsive to RAM.1, with the exception of those containing GPIb alpha Delta 569-579, which behaved like control cells. These findings support a role of the GPIb beta intracellular domain in controlling the adhesive properties of the GPIb/V/IX complex through phosphorylation of GPIb beta Ser166 and point to the existence of cross-talk between the GPIb beta and GPIb alpha intracellular domains.
منابع مشابه
Quantitative Immunophemotyping of Platelet Surface Glycoproteins among Iranian Patients with Bernard-Soulier Syndrome
Background: Bernard-Soulier syndrome is a rare inherited bleeding disease caused by quantitative or qualitative defect of GPIb/IX/V, a platelet complex that binds the Von Willebrand factor. The expression of GPIb-IX-V complex can be evaluated by flow cytometry and confirmed by the absence of ristocetin-induced platelet aggregation in platelet-rich plasma. The main aim of the present study was t...
متن کاملکاهش سطوح بیان رسپتور پلاکتی GPIbα بهواسطه ریزش خارج غشایی در فرآوردههای پلاکتی تغلیظ شده از پلاسمای غنی از پلاکت
Background: Platelet adhesion typically occurs by the critical role of GPIb-V-IX in capturing free-flowing platelets to the injured vessel wall where its rapid binding kinetics enables platelet tethering even under conditions of high shear through the interaction of the major ligand-binding subunit of GPIb-V-IX, GPIbα with subendothelial-bound vWF. During storage, platelet undesired activation ...
متن کاملشناسایی 5 جهش جدید در ژن گلیکوپروتئین Ibα پلاکت در بیماران برنارد- سولیر ایران
Background & Aim: Bernard-Soulier syndrome (B.S.S) is a rare hereditary bleeding disorder due to molecular defects of platelet GPIb–IX–V. The GPIb-IX-V complex is composed of four chains of GPIbα, GPIbβ, GPIX and GPV. The largest chain of this complex is GPIbα and is responsible for binding to ligand and most of identified mutations belong to this glycoprotein. The aim of this study was...
متن کاملHeat-shock protein gp96/grp94 is an essential chaperone for the platelet glycoprotein Ib-IX-V complex.
The platelet glycoprotein Ib-IX-V complex (GPIb-IX-IV) is the receptor for VWF and is responsible for VWF-mediated platelet activation and aggregation. Loss of the GPIb-IX-V complex is pathogenic for Bernard-soulier Syndrome (BSS), which is characterized by macrothrombocytopenia and impaired platelet function. It remains unclear how the GPIb-IX-V complex is assembled and whether there is a role...
متن کاملSHIP-2 forms a tetrameric complex with filamin, actin, and GPIb-IX-V: localization of SHIP-2 to the activated platelet actin cytoskeleton.
The platelet receptor for the von Willebrand factor (VWF) glycoprotein Ib-IX-V (GPIb-IX-V) complex mediates platelet adhesion at sites of vascular injury. The cytoplasmic tail of the GPIbalpha subunit interacts with the actin-binding protein, filamin, anchoring the receptor in the cytoskeleton. In motile cells, the second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3) indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 101 9 شماره
صفحات -
تاریخ انتشار 2003